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A quasi-3D model of the unsteady Navier—Stokes equations in a rotating frame
of reference has been developed. The equations governing the flow past a rotat-
ing blade are approximated using an order of magnitude analysis on the spanwise
derivatives. The model takes into account rotational effects and spanwise outflow
at computing expenses in the order of what is typical for similar 2D calculations.
Results are presented for both laminar and turbulent flows past blades in pure rota-
tion. In the turbulent case the influence of small-scale turbulence is modelled by the
one-equation Baldwin—Barth turbulence model. The computations demonstrate that
the main influence of rotation is to increase the maximum lif.1999 Academic Press

1. INTRODUCTION

The design of blade shapes for wind turbines is typically based on employing the bla
element momentum-theory (BEM) with lift and drag forces determined from 2D measu
ments. The results obtained are reasonable in the vicinity of the design point, but in sta
conditions the BEM is known to underpredict the forces acting on the blades (see, ¢
Rasmussen [11]).

A likely explanation for the underprediction is that the flow is not adequately modelle
by static 2D airfoil data in the stalled regime. From experiments it is evident that radial flc
exists in the bottom of separated boundary layers on rotating wings and it is likely that t
alters the lift and drag characteristics of the individual airfoil section. The physics behi
this is that the outflow induces a Coriolis force in the chordwise direction which acts a
favorable pressure gradient that tends to delay boundary layer separation.

These 3D effects were first described by Himmelskamp [7], who found lift coefficients
high as 3 near the hub of a fan blade. Later experiments are due to Milborrow and Ros:
who carried out a wind tunnel study of the loading on a model rotor. Here, it was found tl

518

0021-9991/99 $30.00
Copyright®© 1999 by Academic Press
All rights of reproduction in any form reserved.



QUASI-3D NAVIER-STOKES MODEL 519

the effective lift coefficient was higher than that obtained from 2D data. Using balanc
wind vanes Savino and Nyland [13] made it possible to visualize the flow direction on 1
surface of a full-scale rotor. They found a chordwise flow upstream of the separation |i
whereas the flow in the separated regions was strongly radial. Later experiments carrie
by, e.g., Ronsten [12] and Bruinirgg al.[3] support these observations.

In an analysis by Fogarty [5] it was shown that 3D cross flow effects are small f
attached boundary layers on a rotating blade. As a conclusion, Fogarty suggested the
observed deviations from 2D behaviour only occur for separated boundary layers. Fi
flow visualizations on a rotating blade, the same was noted by McCroskey [8] who obser
separated flow to be dominated by a significant radial flow component, whereas the loce
of the separation line did not change appreciably. In Appendix A we show that the spanv
velocity component compared to the chordwise component scaleya$, wherec is
the chord length and is the spanwise distance measured from the rotational axis, wi
p=1 for attached flow angp= —1/3 for separated flow. Thus, near the rotational axi
wherec/z= O(1) rotational effects are expected to have a significant impact on the airf
characteristics for both attached and separated flows. On the outer part of the blade, how
rotational effects are mainly related to separated flow.

To provide more representative airfoil data for use in rotor-performance calculatio
it is necessary to derive synthesized 3D data either from experiments or from calct
tions. For many reasons it is difficult, however, to extract the data solely from experimet
First, data from model experiments are of minor value as the Reynolds number, wt
is a crucial model parameter, has to be very close to reality. Second, in a full-scale
periment it is a difficult, if not impossible, task to derive local airfoil data which is no
polluted by secondary effects, such as turbulent inflow, tower blockage, etc. This is furtt
more complicated by the problem of determining the local angle of attack correctly.
the other hand, solving the full 3D Navier—Stokes equations in a rotating frame of ref
ence is known to be very computing consuming and it is not evident how the results fr
global 3D Navier—Stokes solutions may be employed to determine local airfoil charac
istics.

Thus there is a need for a method which is computationally reasonable at the same
as itis capable of predicting leading 3D effects on a rotating blade in attached as well &
stalled conditions.

In the proposed model, presented in the following, the full Navier—Stokes equatic
are approximated using an order of magnitude analysis on the spanwise derivatives.
results in a quasi-3D formulation in which rotational effects and radial flow componer
are maintained. As a result, the calculation needs only to be carried out on a 2D air
hence reducing the computing costs in the order of what is typical for a pure 2D calculati
Earlier, similar approaches have been made in fixed-wing aerodynamics by applying
infinite-swept-wing approximation on the boundary layer equations, see, e.g., [4, 10]. F
rotating blade, such an approximation has been implemented and used in viscous/inv
coupling algorithms [17, 18]. However, this is the first time it has been applied on t
unsteady Navier—Stokes equations in a rotating frame of reference.

The paper is organized as follows. In Section 2, the hypothesis employed in the span
direction of the rotating airfoil is discussed and followed by a set of quasi-3D Navier—Stol
equations. In Section 3, a Baldwin—Barth turbulence model for the quasi-3D model is giv
The numerical implementation is presented in Section 4. Numerical results for lamina
well as turbulent flows are presented in Section 5.
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2. FORMULATION OF THE PROBLEM

Consider a blade section performing a rotating motion.(bety2 be the rotating ref-
erence system associated with constant angular velggignd letoz define the spanwise
direction of the blade. Define by= (u, v, w) the velocity and byw = (wx, wy, ;) the
vorticity in the rotating reference system.

2.1. Hypotheses

By considering the flow around an infinite cylinder of arbitrary cross-section rotatir
steadily about the (negativgaxis (see Fig. 1) it was shown by Sears [14] that the invisci
velocity components may be written as

_ 0

u= Qyza—x, 1)
d

v = Qyza—i, (2)

w = Qy[2X — ¢], 3

wherep = ¢ (X, y) denotes the equivalent 2D velocity potential due to a blade in translatior
movement with unit speed in the negatixalirection. It is readily seen that the velocity
componentsi andv are given in a form as would be expected from a simple 2D analysis.
is not obvious, however, that the spanwise velocity component can be expressed in a si
formula which depends only on the velocity potential of the equivalent 2D flow.

In the later analysis of Fogarty and Sears [6] it was shown that the expression for
spanwise velocity component is the same even if the blade is advancing in the direction
pendicular to the plane of rotation, i.e., tir@irection. To derive an extended 2D approact
in which the important effects of Coriolis and centrifugal forces are included we now se
a plausible approximation that allows us to get rid of the spanwise derivatives in the
equations. An approximation that is consistent with Egs. (1)—(3) is to assume the follow
similarity expressions for the velocity components

u= f(x,yz 4)
v =g(X,y)Z (5)
w = h(X, y). (6)
yv
—Qy
U~ Z
V(t) 0 U
zZW

FIG. 1. Definition of the coordinates.
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These expressions then lead to the basic hypothesis

au u

— =, 7
0z z (7)
ov v

— =, 8
0z z (8)
ow

— =0. 9
0z ©)

In the boundary layer, Egs. (4)—(6) assume similarity with a scaling of the spanw
distancez, for the chordwise velocity components. The spanwise velocity distribution
assumed to be the same at all spanwise positions. This obviously introduce deviation
compared to a full 3D representation, that are difficult to quantify completely. However,
Appendix A we have made an order of magnitude analysis of the terms that are modi
or neglected in the full 3D equations. From this it is found that in the worst case the er
will be of O(c/z)? for attached flow and 0®(c/z)%2 in the case of separation. It should
be noted, however, that the aim of the quasi-3D model is to enrich a 2D airfoil code w
effects from the influence of Coriolis and centrifugal forces. Thus, employing Egs. (7)—
to neglect terms containingrderivatives a set of equations may be derived that is muc
simpler than the full 3D equations and which contains 3D terms to leading ordgéz for
both attached and separated flows.

2.2. Formulation in Cartesian Coordinates

The motion of a viscous incompressible flow in a rotating reference system is goveri
by the time-averaged Navier—Stokes equations

ou 02 d ou
— 4+ VXUxU+22xU+—xr=-VP+4+ — — +Vui ||, (10
P +VXxuUxu+2Qxu+ TR + ox] |:(V+Vt)<axj + ,)} (10)

V.u=0, (11)

whereQ2 = (0, Qy, 0) and the total pressu = p/p + |u|?/2+ (2 -1)?/2— Q?r2/2, with
p denoting the static pressurethe densityy the kinematic viscosity, andthe position
vector. The Reynolds stresses are modelled by introducing an eddy visgosity

ou; BUJ'

By NI 12
) vt(axj+axi> 12)

whereu/ denotes a fluctuating velocity component @nds the time-averaging.
In Eqg. (10), the diffusion term contains a derivativevpfvith respect ta. This requires
an additional hypothesis fag. For simplicity, we assume that

3Ut

— =0. 13
57 (13)
Using the hypothesis (7), we get

9%u 9 (au) 9 (u) _z0u/oz—u _ z(u/z)—u

9z)  9z\z b2 z

- _ 2 0.
0z2 9z
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Using the hypotheses (8) and (9), similar expressions are obtained for the other velc
components

82
v
972

92w _

92

As a result the-derivatives of the diffusion terms vanish

9 au v 0 +w) (ou v 32u v dw
az| TG TV a@ﬁ‘w+“””w+ 9z

=0.

We now consider the vorticity definition. Using the hypothesis discussed in Subs
tion 2.1, the quasi-3D vorticity definition is given as

Jw v

= — — — 14

Wy ay 2’ ( )
u oJw

= — 15

T 7T x (15)
Jdv du

= — - —. 16

Wz ax  ay (16)

In Eq. (10), the onlyz-derivative left is the pressure. But there is no hypothesis, neith
for the static pressunenor for the total pressure. To overcome this difficulty, we consider
the curl operator defined abov@,/9x, 9/3dy, 1/z)x, and keep in mind that the curl of a
gradient operator is zero. Then the only possible hypothesis for the pressure is that

I(p+u?/2+ (2-1)2/2—Q%2/2)  (p+|u?/2+ (2-1)2/2—Q%2/2) 17)
0z N z '
From Egs. (9) and (11), the divergence of the velocity becomes
au  dv
Ix + 3y =0.

Then the quasi-3D formulation in velocity-pressure variables reads

ou oP 0 ou 0 ou 0
at+wwy—vwz+2w§2y=—+2(V*ax>+{1ﬁ( +v>} (18)

Ix | Tax ay ay | ax
0 oP d 0 d d d
—U+Ua)z—wa)xz——+— v* —u+—v +2— N , (19)
at ay | ox ay | ax ay " ay
ow P 0 ow 0 ow
@ Uy — 2Ry = —— 4+ — (v I8} (2, 20
gt T Uex T Uy Y z+ax(v 8x)+8y(v ay) (20)
ou  Jv
—+—=0, 21
X + ay (21)

wherev* = v + ;.
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In the present work we prefer to employ the velocity-vorticity form of the Navier—Stoke
equations because the algorithm forming the basis for the model is formulated in veloc
vorticity variables (see [15]).

Taking the curl of Egs. (18)—(20) we get

wwyx  Uw,

z z

dwy
ot

9
+ 8—y(vwX — U(wy + 2Qy)) +

_ 82(V*wx) _ az(V*wy) . }a(l)*a)z) g azv* u—+ azv*v s (22)
3y2 Xy z X Z \ OX3y ay?
9o 9 Vo w(wy + 292y)
T Uy +22)) — v — St 4 M T S
_ P(rwy)  Prex) 130wy 2 32"*” n ﬁv , (23)
X2 Xy z oy z\ ox? axay

0w, n 0 (Uwy) n d(vwy) B 0 (wwy) B d(w(wy + 2Q2y))
ot ax ay ax ay

N CRNG %v*au  a%v* du 9%v* du 3%v* v
=\t 3 |Vel+2 >+ — = ————a ] (24
X ay 0X4 dy  9xaydy dxdy dx 9y 9X

The divergence of the velocity, Eq. (21), implies the existence of a stream fungtjon,
in the z-direction such that

__%

u= 3y’ (25)
0y

v= (26)

From the vorticity definition, Eq. (16), a Poisson equationfais obtained

%y %y

In order to ensure equivalence between the present formulation and that of the primi
variables, the uniformity of the pressure, which determines the value of the stream func
at the airfoil surface, is added
dw

Q .
%[S(QH_ Ak S)—i-u.nwz—w(w—i-ZQ)'n—V *lds=0, (28)
b ot an

wherecis any closed path around the airfails the tangent vector, amthe normal vector

to the surface.
The equation of the velocity component in thdirection is obtained by combining the
vorticity definition, Egs. (14) and (15), with Eqg. (21)

2w 2w _ dwy  dwy

e . 29
%2 + ay? oy ax (29)
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2.3. Formulation in Curvilinear Coordinates

The computational grid is generated using a conformal mapping (see Appendix B).
mesh is orthogonal and stretched in the radial direction of the airfoil. Denotirg,ly
the coordinates in the transformed plane, the transformation Jacobian is given by

J= éx’?y - gy’lx,
and the Jacobian of the inverse transformation is
It =Xy, — X, Ve

Since the grid is orthogonal, we haxgx: + y: y, = 0. Define the contra-variant velocity
components

u® = y,u— X, (30)
Ve = = YU+ X, (31)

and the contra-variant vorticity components

Wy = Ypx — XyWy, (32)

C
X
o = —Yrwx + X wy. (33)

Introducinge =y, /X, in curvilinear coordinates the vorticity definitions become

ow  avt
u¢  ow
Cc Cc
3 e, = 2OV (U7 (36)
a& i\ o

and the divergence of the vorticity takes the form

dwt 0t  J71
IWow= 2 T S @2 37)
9t " on z

The contra-variant velocity components are transformed from the definition of the stre
function

u® = ———, (38)

Vo= —. (39)
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For convenience, the absolute vorticity is employed as a variable

W% = Y05 — Xy (@y + 2Qy), (40)
w; = w;. (42)

Additional terms from the turbulence modelling are defined as

Fil=2——+2——, (43)

au dv dv v
p =2 42— (44)
ay dXx ay ay

uad a
S LA LA
Z 90X zZ dy

2 th th
= u— +1°— ). 45
le( oe " 877) (49)

In the (&, n) coordinate system, the final vorticity transport equations take the form

dws* 9 (vca);* — uca);*) B (uca);‘ — wa))c(*)

ot an J-1 z
DL ey L0 (vef\] @i 0F aFf o
an | J-10¢ y Jloap\ « z 0t n z
doy" N (ww?* — vw3) 9 vl — oy
at z 9E J-1
1 a(v*ws a1 d 1 9 (vl Ff  OF
- = (V a)z)_i_i 77(0“)*0)&:)_77 vV wy +71_73’ (47)
az Iy 98 | J1 9¢ y J7lop\ « az &
337w} 9 . . . .
T 2+ 3 (Uw) — wof) + — (Vo) — woy)
_ 0 [ 00p] , 8 [1a0%ep] | aFS 8 (FF) )
d& o€ an|la Jn d& o\ o

where 7, F5) is the contra-variant form aff, Fy).
The Poisson equations for the stream function and velocity componentardihection

become
3 [ oY NS A
e (e5e) T (ay ) = 97 )
2 (o) 2 (20my 2 (R (awy) (50)
9\ 0& on \a dn i\ a 0&

The uniformity condition of the pressure takes the form

9 C o(viw* .
]{ [%{” + U0} —wod —a (\;;)Z) + a2 (XX + YYE)] dn=0. (51)
o4
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3. TURBULENCE MODELLING

The turbulence model used here is the one equation model of Baldwin and Barth
which is derived from the classickl- ¢ model. In the following, we give an introduction
to the present implementation of the model. Further details can be found in [2].

The model solves a partial differential equation for the turbulent Reynolds nuraker
k2/(ve),

2
[;R‘ (Cea fa — ) /R +v(1+2"t> R —li< 8R‘> (52)

OXi0X;  Oe 0X; X

where the eddy viscosity is definedias= c,vR; D1D>.
The functionsD; and D, are damping functions given as

Dy =1—exp(—y"/A]), (53)
D, = 1—exp(—y"/A3). (54)

As assumedy; or R; is independent of. As a consequence the derivatives in fRe
equation are taken only with respectt@ndy.
The production ternP is given as

P_ t(au. n ou; )au. (55)

oXj 9% J 0X;
where the derivatives with respect to thelirection are calculated using the hypothese:

given in Subsection 2.1.
The functionf, is defined as

Y+ D Y+ D1 Y+
DiDy+ —— [ —=ex —ex . (56
{ 12+¢—DID2<A1 (- A1)+A; o~ AM (56)
The constants used are

k=041, ci=12 co=2
c, =009, Af =26 A} =20

The boundary condition fdR; at the wall is taken equal to zero and at the inflow boundar
it is put equal to 0.5.
4. NUMERICAL IMPLEMENTATION

In this section, we present the discretization of the resulting system of equations
curvilinear coordinates.
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4.1. Temporal Discretization

A semi-implicit, combined Adams—Bashforth/Crank—Nicolson scheme is used to ¢
vance the solution in time. It consists of writing the vorticity transport equations, Egs. (4¢
(48), at time level(n + 1/2)ét and evaluating the convective-deformative and diffusior
terms semi-implicitly. The terms withFy, F5, F3) andu are calculated explicitly at this
time level by using an Adams—Bashforth extrapolation schemevfFterm appearing in
the transport equations is taken at time lawl.

Then, at each time step, a set of Helmholtz equations is obtained, with vorticity bound
conditions, as

2 C,N+1 +1 2 C#,N BFSn O‘cmwn 8F3n_ Fcn !
— ’ = — = 3 — — - ) 57
stk TS 5th T+3( 5, z o z ®7)
2 o n+1 +1 _ N Flan 8F3n Flc’nil aF:?il

* =N _ 3( 1 — - - , 58
sty + % sty <+ az & oz A& (58)

2
st (0T + 8

)
2 o ESP 5 /FSn o FSM 1 5 Fc,n—l
Il 5| ¥ 9 (P 2 KA 59
=5t )S%{as an(aﬂ[as "\ Ta ) 9

ow  av’
M =(——-— —2%X,Q , 60
(,()X|$:O (an Z 7 y)Lzo ( )
u¢  Aw
y = — — +2X:Q , 61
“vle=o <az og T y) o (61)
a(av® 9 [ut 3
Wzle=0 = [( 5% —an(a J1 , (62)
£=0
where
$+1=i v°’”+1/2a)§*’”+l usn+1/2., c*n+1 uc,n+1/2w;,n+1_wn+1/2w)c(*,n+1)
an J-1 z
e D[ gy - D (0] aa(r i
an [ It ok Y J-1an o dE ’
(63)
q _ i vc,n+1/2w§*,n_uc,n-&-l/ng:/*.n ~ (uc,n+1/2w;.n_wn+l/2w§*,n)
Br] J_l Z
d 1 0 1 3 *,N . Ck,N 9 (v*Nestn
+ — j—(av*’”wi*'n) _—_— VL + gw’ (64)
on [ I~ 0§ J-1an a z dE
$+1_ (wn+l/2w§*’n+l—Uc’n+l/2w;’n+l) 0 vc*”+1/2w§*sn+l_UC,n+1/2w§*.n+1
- z & J-1
L L0 0D ey LD (Ve
oz oy 0k | 37 ¢ y I\« :

(65)
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$ B (wn+1/2w§:/*,n _ Uc.n+1/2w;<,n) - i vc,n+l/2w§*,n _ uc,n+l/2w():/*,n
N z At J-1
NS N I IR SN G i Y
oz an 98 | J1 9k Y J-19n a ’
$+1 _ %(uc,nﬂ/zw;,nﬂ _ wn+1/2w)c(*,n+1) + %(vc,n+l/2w;,n+l _ wn+1/2w§*,n+1)
3 r 9 *,N, % N+1 9 1 9 *,N, x,N+1
_ 0 [ a0t 8 [1a(vler™ )] 67)
& | d& on | o an
a * % 8 * *
S; — g(uc,nJrl/sz.n _ wn+1/2w§ .n) 4 % (Uc,n+1/2wz,n _ wn+l/2w(; ,n)
8 r a *,N kN a 1 8 *,N %N
_ [, a0 ey 6 [1a(vern) ] (68)
& | o€ an o an
and
usMY2 = 1.5u°" — 0.5u0" 1, (69)
poMl2 — 1 50" — 05051 (70)
w2 = 150" — 0.5w" L. (71)

In the above system of equations, the three vorticity componefits; ™, w§*v“+1, and
w31 are coupled and solved simultaneously.

4.2. Spatial Discretizations

The equations are discretized in the transformed planB[0x [0, 2] which is divided
into aNg x N, regular mesh with spatial discretization

R 5 _2

8 = —, )
3 Ne n N,

To ensure that the discrete functions verify the conditioVisw =0,V .-u=0,w =
V x u), a staggered grid is used. The first and second derivatives are discretized |
standard second-order centered difference scheme except the convective-deformative
that are discretized by an upwind second-order QUICK scheme. The collocation points
the different unknowns are defined as shown below:

e The velocity component® is calculated at nodesi +1/2)8&, jén) for 1 <i < Ng,
1<j<N,

e The velocity component® is calculated at nodessé, (j +1/2)8n) for1 <i < Ng,
1<j<N,.

e The velocity componenb is calculated at nodeg$sé, jén) for1<i <Ng, 1<j <
N, .

e The vorticity componenb$ is calculated at nodessé, (j +1/2)én)forl <i < Ng,
1<j<N,.

e The vorticity componenty is calculated at node&i + 1/2)8¢, jén) for 1 <i <
N:—1,1<j<N,.

e The vorticity componend, is calculated at node&i + 1/2)8¢, (j + 1/2)8n) for
1<i<Ng—1,1<j<N,.
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e The stream functiony is calculated at nodessé, jén) for 1<i <Ng, 1< j <N,.

e The divergenc& - u is calculated at nodeg$sé, jon) for 2<i <Ng, 1<j <N,.

e The divergencd - w is calculated at nodasi + 1/2)8&, (j +1/2)8n) for 1 <i <
N: —1,1<j<N,

4.3. Resolution of the Helmholtz Equations

In order to ensure a divergence free vorticity field, the three Helmholtz equations
solved simultaneously by a Gauss—Seidel or a Successive Line Overrelaxation (SL
iterative method. The latter consists of an implicit calculation in one specified direction
order to accelerate the convergence of the iterative method.

Since the convective-deformative terms are discretized semi-implicitly, three matric
each containing 5 diagonals, have to be solved in each iteration of the SLOR method
the points where the velocity and vorticity components are not defined, a linear or bilin
interpolation is used. Further details can be found in [15].

4.4. Resolution of the/- and w-Equations

They - andw-equations are both Poisson equations. For simplicity, we consider only 1
Y-equation. In general, a 2D Poisson equation can be solved easily by amaléddhéting
directionimplicit) method or an iterative method, such as GMRES or Gauss—Seidel. Sir
a very strong stretching has been useé-thirection, this kind of method demands a lot of
iterations and loses the numerical precision.

Since the grid used is periodic in thedirection, a Fourier transformation in this direction
has been applied adaptively. In Fourier space, the transformed equation takes the forn

o\ k.
85( 85) ka \]lwzkv (72)

for —N,/2 <k < N,/2. The standard second-order central difference scheme is used in
&-direction. The resulting matrix system is solved easily by a simple LU-factorisation.
The Fourier transformation of a functiofi, is given by

N,
fi = ?”Z f(j)exp(—m(j — Dksn),  for —N,/2+ 1<k <N,/2—1,
j=1

pd
5

P
Il
L

f(j)exp(—m(j — Dkén), fork =—N,/2,N,/2,
j=1
and the inverse Fourier transformation is

N, /2

f(hy= Y feexpm(j — Dksn).

k=—N, /2

The integral equation for uniformity of the pressure is discretized by introducing a unifol
tangential velocity, or a circulation at the first points off the airfoil surface,

+aQ,(X% + YYe) |[dp =0

j{ [\/a\]—lvf o IV i)

uC * _
5t + Uw, —wo, —o 98
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This additional tangential velocity serves to determine the stream function at the surf
and results in an implicit Neumann condition for mode 0 of the stream function.

5. NUMERICAL RESULTS AND DISCUSSION

In the following, results for laminar flow past a rotating NACA 0015 airfoil and turbulen
flow past a rotating NACA 63— 415 airfoil are presented. The effect of rotation is elucida
ted by comparing quasi-3D computations to 2D computations and measurements, witt
non-dimensional spanwise distankes z/c, as an additional 3D parameter.

5.1. Quasi-3D Computations for Laminar Flows

To demonstrate the influence of 3D rotating effects, the flow around a NACA 0015 airf
at a Reynolds number 200 is calculated on a 2291 O-grid with stretching coefficient
a’' =0.5.

In order to analyse the influence of the computational grid, a fine grid with<x25T1
points was used in the case of an airfoil at incidencesttlk = 6. The pressure variation is
shown in Fig. 2. From the figure it is seen that, except for a small difference at the pres:
peak, the two curves are almost identical. Consequently, all the computations shown in
section are carried on the 129101 grid.

First, steady flow at an angle of attaglequal to 15 is examined. In Fig. 3 where stream
lines are shown at varying distances from the rotational &xsz/c, a decrease is seen in
the size of the separated region for decreakings shown in Appendix A this is expected
asw/u= O(k~1) for the boundary layer outside the separated region.

20 — ———————

— 129X101
—-— 257X201

-Cp

2.0 R 1 R I . ) R 1 R
0.0 0.2 0.4 0.6 0.8 1.0

x/c

FIG.2. The—C, variation around a NACA 0015 airfoil at incidence’1Re= 200, anck = 6.
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FIG. 3. Stream lines for the flow around a NACA 0015 airfoil at incidence &6d Re=200, (a) 2D,
(b)k=86, (c)k=4.

Distributions of the negative pressure coefficienC, and skin friction coefficient,
Cs, are in Fig. 4 shown at various spanwise distankes\ the lower side of the airfoil,
—C,;, is seen to be almost independentkofvhereas the upper side values increase whe
approaching the rotational axis. This corresponds to the shrinking of the separation bu
that was observed in Fig. 3 at decreadingalues. The skin friction distribution is seen to
be almost identical at all spanwise distances, thus rotational effects only have an influe
on the pressure distribution. Further, this influence is only significant at separation.
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FIG.4. The—C, andC; distributions on a NACA 0015 airfoil at incidence 1&nd Re=200.

In Fig. 5, the streamwise vorticity component is shownKet 6 andk = 4. From the
figure, this vorticity component is seen to attain higher values at decreasing spanv
positions. The spanwise vorticity component is shown fBr R=6, andk =4 in Fig. 6.
From the figure, no big difference is seen except that the vorticity is closer to the wall at
separated region when decreasing spanwise positions (same phenomenon as in the ¢
line plot, Fig. 3).

Computed drag and lift coefficien® andC;, respectively, at different distancksnd
incidencesr are shown in Fig. 7. Itis noted that for all incidences, decreasing the spanw
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FIG. 5. Streamwise vorticity for the flow around a NACA 0015 airfoil at incidence &6d Re=200,
(@)k=6, (bh)k=4.

positionk results in increased lift and drag coefficients. As shown by the figure, the incre:
in lift is more pronounced than the increase in drag. Note that in this figure, the value:
incidence 25 are averaged in time because the flows have become unsteady.

5.2. Quasi-3D Computations for Turbulent Flows

In order to analyse the influence of 3D rotating effects on turbulent flows, the flow pas
rotating NACA 63 — 415 airfoil has been computed at a Reynolds nunftees 1.5 x 10°.
This airfoil is widely used for wind turbine rotors, e.g., the outer part of the LM 19 win
turbine blade. The calculations are performed on ax1801 grid using the Baldwin—Barth
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FIG. 6. Spanwise vorticity for the flow around a NACA 0015 airfoil at incidence 4bd Re= 200, (a) 2D,
(b)k=86, (c)k=4.

turbulence model. To ensure that the first grid point off the airfoil surface is located at
values less than 4, the height of the first computational cell is put equal to abbrt3
resulting in a stretching coefficieat=0.999.

As a first validation of the developed code, 2D computations on a<1811 grid were
compared to experimental data [1] for incidences up fo 2Be outcome is shown in Fig. 8
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FIG.7. Cg4andC, vsa fora NACA 0015 airfoil at Re=200.

where the compute@,;-distribution is compared to measured airfoil data at a Reynolc
number of 3x 10°. The comparison demonstrates that the 2D version of the code
combination with the Baldwin—Barth turbulence model is capable of predicting both st
and post-stall correctly.
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2.0 : : : :

=——a Computation
¢ Experiment

0.0 . L . 1 .
0.0 10.0 20.0 30.0
Alpha

FIG. 8. Comparison of computed 2D, -coefficient vsa of a NACA 63, — 415 airfoil at Re=1.5 x 1¢°
with experimental data at Re3 x 10°.

In order to analyse the sensitivity of the grid spacing, two additional computations, c
where the number of grid points was doubled in tangential direction and one with a stron
stretching ofa’ = 0.9995 in the normal direction, were carried out at an incidence of 2(
andk =6. The pressure variations are compared in Fig. 9. From the figure it is seen t
letting the maximum distance of the first grid points away from the airfoil surface go fro
yt=3.5t0y" =1.7 does not change the pressure distribution. This is to be expected,

16.0 v T v T r v r r

14.0 — 161X101 with max y+ = 3.5 .
- ——- 321X101 with max y+ = 3.5 1

120 - 161X101 with max y+ = 1.7 -

100 } 4

-Cp

0.4 0.6 0.8 1.0
x/c

FIG.9. The—C, variation around a NACA 63— 415 airfoil at incidence 20 Re=1.5 x 1%, andk =6.



QUASI-3D NAVIER-STOKES MODEL 537

we employ an O-grid wherng" attains minimum values at the leading and the trailing edge
For the original mesh these values are below two. Doubling the number of the grid point
the tangential direction from 161 to 321, however, is seen to change@hedistribution

on the suction side of the airfoil. Furthermore, a weak unsteady solution appears on the
grid. This is seen in the stream line plot in Fig. 10, where the wake line on the fine g
exhibits an unsteady undulating behaviour. The sensitivity of the grid spacing on the
foil characteristics is summarized in Table I. From thisitis seen that a further stretching in

FIG. 10. Stream lines for the flow around a NACA £3 415 airfoil at incidence 2Q Re=1.5 x 10°, and
k=6. (a) Results for 16% 101 points withy™ < 3.5 at the first points away from the wall; (b) 321101 points
with y* < 3.5 at the first points away from the wall; (c) 164101 points withy™ < 1.7 at the first points away
from the wall.
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TABLE |
Grid Refinement Study for the NACA 63, — 415 Airfoil
at Incidence 20, Re=15x 10° and k=6

Grid maxy" Cd Cl Cm
161x 101 35 0.13841 1.71266 —0.10335
321x 101 35 0.15669 1.61114 —0.10991
161x 101 1.7 0.13682 1.71274  —-0.10252

a

FIG. 11. Stream lines for the flow around a NACA 3 415 airfoil at incidence 20and Re= 1.5 x 10,
(a) 2D, (b)k=6, (c)k=4.



QUASI-3D NAVIER-STOKES MODEL 539

normal direction does not change noticeably the airfoil forces. Doubling the number of g
points in the tangential direction decreases the lift coefficient by about 6% and incree
the drag coefficient by about 12%, as compared to the original mesh. Consequently,
solution is still grid-dependent, but to analyse the influence of rotational effect on the airf
characteristics it is found to be sufficient to perform the computations on the 161
grid.

In order to analyse the influence of rotation on the development of separation bubk
the flow at an incidence of 2thas been studied using the quasi-3D model. In Fig. 11
streamline plots are shownlat co(2D), 6, and 4. It is seen that the effect of rotation is to

16.0 ——

14.0 b — 2 .
——- k=6 ]

1208 e k=4 1

10.0 § 1

0.10 . r , . . r .
0.08 } —— 2D -
——- k=6
...... - k=4
0.06 } -
S 004 .
0.02 -
0.00 4
_0‘02 L L L P 1
0.0 0.2 0.4 0.6 0.8 1.0

FIG.12. The—C, andC; distributions on a NACA 63— 415 airfoil at incidence 20and Re=1.5 x 1(F.
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FIG.13. Streamwise vorticity for the flow around a NACA£3415 airfoil atincidence 2tand Re= 1.5x 1(F,
(@)k=6, (b)k=4.

stabilize vortex shedding and suppress the growth of the separation bubble. The stagn
point moves downstream and the separation moves slightly towards the leading edge v
k becomes small. This phenomenon is also observed ir@eandC; curves in Fig. 12,
where the influence of rotation is seen to be most pronounced orGhedistribution,

as was also found in the laminar case. In Fig. 13, the streamwise vorticity is shown
k=6 and 4. From the figure this vorticity component is seen to attain higher values wt
approaching the rotational axis, i.e., for smalalues. In Fig. 14 we depict the normal
force coefficientC,, and the tangential force coefficie@;, as a function of incidence. It
is observed that decreasikgesults in an increase i@, and a decrease i@;, with the
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FIG. 14. C,andC; vsa of a NACA 63, — 415 airfoil at Re=1.5 x 1(P.

former being the most significant. Thus, a maxim@pavalue of about ¥ in the 2D case
is increased to approximately 1.9kt 4.

6. CONCLUSION

A quasi-3D Navier—Stokes model which takes into account rotational and 3D effects |
been developed. The model enables the study of the rotational effect of a rotor blad
computing costs similar to what is typical for 2D airfoil calculations.
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The model shows, both for laminar and turbulent flows, that rotational effects ha
an influence on the airfoil characteristics that depends on the non-dimensional span
distancek = z/c. Thus, the effect of rotation, which becomes more pronounced as the a
of rotation is approached, is to suppress vortex shedding and the development of separ
bubbles. As a consequence, decreasing the spanwise position results in an increase ir
C, andCqy.

The depicted results show that the model is capable of determining the correct qualite
behaviour for airfoils subject to rotation. It has not been possible to compare the compt
results with detailed 3D experiments, as such are not available. However, the mode
presently being validated against full 3D computations in order to verify the error introduc
by the basic hypothesis. If it turns out that the model gives the correct behaviour, not |
qualitatively as in the cases treated here, but also quantitatively, it will be a useful tool
deriving airfoil data for use in engineering predictive codes.

APPENDIX A: ORDER OF MAGNITUDE ESTIMATION OF z-DERIVATIVES

To evaluate the influence of terms containmderivatives we here perform an order of
magnitude analysis on the flow equations in a rotating frame of reference. For simplic
we only consider the parabolized Navier—Stokes equations in chordwise and span
directions.

Considering a body-fitted coordinate systenm, z) with velocity component&u, v, w),
we get continuity,

au Jdv Jw
T, 1
s * an * 0z @)
s-momentum,
au au dou _ 1ap 2 07s
U— +v— 2Qyw cosh + Q5scoS 0 + —— 2
9s T Van TWaz T T, s T WOV 30" @)

Z-momentum,

Jw ow ow 1dp 2 01,
u— — — = —2Qyucost + Qyz+ —— 3
s T Von TV T "oz oY Tzt o 3)
whereé is the angle between the tangent to the surface of the airfoil ang-tection.
The shear stresses are given as

au
Ts=v— — uv,
on
ow
T, =v— —vw,
an

with Wv’ andv’w’ denoting the dominant Reynolds stresses.

As the scaling laws depend on the type of flow regime considered, we here distingt
between attached and separated flows. Geometrically we scale the chordwise dimen
s, by means of the blade chord, and the normal dimensiom, by the boundary layer
thickness$. The latter, however, has no influence on the analysis to be presented in
following.
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A.l1. Attached Flow

For attached flow we assume the chordwise velocity to scale with the inviscid freestre

velocity,
un~,/Q222+ U2 = Qyzy1+22 4)
whered = U/ Qyz.

From the analysis of Sears [14], we get the relation
w ~ QyC. )

Introducing this scaling to the continuity equation we get

dw /ou  [c\? 5
To estimate the order of magnitudejoive may take2,z =30 m/s, which would corre-
spond to the mid section of a wind turbine blade that is turning with a tip speed of 60 m/s.

the wind speed ranges from 0 to about 30 m/s, we gefitkd0, 1]. Thus, in the continuity
equatiordw/dz scales a®(c/z)?, and can be neglected for high aspect ratio blades, whe
cKz

In the momentum equations the chordwise convection terms are the leading terms
attached flow. Comparing these to the spanwise convection terms, we get

2
o ua—“~(9) /\/1+x2, (7)
0s z

w—
0z
3 3 c\?

w_w u_wr\, _ ,/1_}_}\2' (8)
0z ds z

Thus, the spanwise convection terms scal®&s/z)2 and may thus be neglected for z.

A.2. Separated Flow

In separated flow regimes the chordwise pressure gradient becomes small and we
assume the Coriolis term$®,w cosd, to be the leading term in treemomentum equation,

au
u— ~ Qyw,
ds

implying that

u-~ /Qyuwc. (9)

In the Z-momentum equation we assume the centrifugal pumping @fm, to be the
dominant one. The scaling then takes the form

Jw
O(UE> = O(Qiz),
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implying that
u~Qizaw (10)
Combining (9) and (10) we get
u ~ Qyc¥3z'3 (12)
w ~ Qyct37%/3, (12)

and we may now evaluate the order of the spanwise derivatives,

2/3
LD A (13)
0z 0s z
2/3
W Jud o (5)7 (14)
0z 0S z
dw /au c\ %
— ) — ~ | = . 15
dz/ 0s <z> (15)

APPENDIX B: GENERATION OF ORTHOGONAL O-GRID

The orthogonal O-grid used in this paper is constructed by using a conformal mapp
which is an analytical function of finite series Fourier expansion [1]. In the next sectior
we present how to determine the Fourier coefficients (Appendix B.1) and the final form
conformal mapping (Appendix B.2).

B.1. Determination of Fourier Expansion for an Airfoil Profile
In general, any airfoil profile can be mapped to a near circle by the relation
2

z:z’+%, (16)

wherea = chord of airfoil/4, zis the complex variable in the airfoil plane, addhe one
in the near circle plane.
The coordinates af andz' are defined as

Z=Xx+yi, 17)
7 = aexpys +i6). (18)

Then,y andé can be expressed in termsxandy as

coshyr = X
" 2acost’
. y
sinhy = ——,
nhy 2asing

y 2
2sirf6 = p+ p2+(—),

a
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where

2 2
X
p=1—-|—) — A .
2a 2a
The second step is to find the relation between the near circle and a true circle. |
coordinates of the true circle are defined as

Zo = aexpii +ig). (29)

The transformation relating th# plane to thezy plane is the general transformation

Z = zoexp<ZA”+lB”>. (20)

By definitions (18) and (19),
Z =zgexpy — A +i(0 — ¢)). (21)

Equating the real and imaginary parts of (20) and (21), we obtain the two Fourier exp
sions

V- A= Z(;ﬁn cosne + %sinn¢>, (22)
1
b—y=> (% cosng — % sinn¢>, (23)

1

withr = aexp()).
If ¥ is specified at @ equally spaced intervals in the range@ < 27, the firstn-orders
of Fourier expansions have been taken. Then we have

1 2n—-1
wherey, is the value app =rz/n and
2n 1
Z Vi cos( ) (25)
2n 1

Z e sm( > (26)

Ordinarily ¥ is known as a function af, and first approximations are obtained by sub-
stitution of6 for ¢ in the relations (24)—(26). If the first approximations are not sufficientl
accurate, a second approximation can be found by interpolatignaafainstp. Repeating
this procedure, the airfoil profile can be represented sufficiently accurate.
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B.2. Final Form of the Conformal Mapping

In this section, the conformal mapping is generalized in the whole plane. Satting
1/exp(2), we have the mapping from the cirgle= 1 to the physical profile with chordsd
Introducing the stretching function mdirection of the plane outside the circle

r=a 4+ (1-a)expré),
¢ =mn,

wherea’ is a coefficient of the stretching, we have the expressions

n
A Bm .
¥ =logr +) r—rr: cosmg + r_f:“n sinmg, (27)
m=1
" Bm An .
0 =¢+Zr—mcosm¢>— r—msmmzp, (28)
m=1
and
/ a2
Z2=7 + —_
Z/
Z =exp(yy +i0).

The metric functions of the conformal mappifig/0&, dy/d&, 0x/dn, anddy/dn are
calculated as

ax 9y  m(r—a) a? .

X .9 _ a2 .
7+|7y =l (ZO_>(Cx+|Cy)v
Z
with
" —m
Cyx=1+ E r—m(Am cosm¢ + By, sinmg),

m=1
n

Cy=>_ :—rT(Bm cosmeé — AmSinme),

m=1
and inverse metric functiort /9x, an/0x, 0§ /9y, andan/dy

%_ r CyRe(F)+CyIm(F)
X r—a Cz+C2 ’

0y _ CyIm(F) — CyRe(F)
X Ci+C? ’

& o CyRe(F) — Cx Im(F)
y r—a CZ+Cs2 ’

01 CxRe(F) + Cy Im(F)
ay Cz+cCz ’
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with

o1
(20 — @2/20)

From these metric functiona, is independent o,

r
o = .
r—a
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