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A quasi-3D model of the unsteady Navier–Stokes equations in a rotating frame
of reference has been developed. The equations governing the flow past a rotat-
ing blade are approximated using an order of magnitude analysis on the spanwise
derivatives. The model takes into account rotational effects and spanwise outflow
at computing expenses in the order of what is typical for similar 2D calculations.
Results are presented for both laminar and turbulent flows past blades in pure rota-
tion. In the turbulent case the influence of small-scale turbulence is modelled by the
one-equation Baldwin–Barth turbulence model. The computations demonstrate that
the main influence of rotation is to increase the maximum lift.c© 1999 Academic Press

1. INTRODUCTION

The design of blade shapes for wind turbines is typically based on employing the blade-
element momentum-theory (BEM) with lift and drag forces determined from 2D measure-
ments. The results obtained are reasonable in the vicinity of the design point, but in stalled
conditions the BEM is known to underpredict the forces acting on the blades (see, e.g.,
Rasmussen [11]).

A likely explanation for the underprediction is that the flow is not adequately modelled
by static 2D airfoil data in the stalled regime. From experiments it is evident that radial flow
exists in the bottom of separated boundary layers on rotating wings and it is likely that this
alters the lift and drag characteristics of the individual airfoil section. The physics behind
this is that the outflow induces a Coriolis force in the chordwise direction which acts as a
favorable pressure gradient that tends to delay boundary layer separation.

These 3D effects were first described by Himmelskamp [7], who found lift coefficients as
high as 3 near the hub of a fan blade. Later experiments are due to Milborrow and Ross [9]
who carried out a wind tunnel study of the loading on a model rotor. Here, it was found that
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the effective lift coefficient was higher than that obtained from 2D data. Using balanced
wind vanes Savino and Nyland [13] made it possible to visualize the flow direction on the
surface of a full-scale rotor. They found a chordwise flow upstream of the separation line,
whereas the flow in the separated regions was strongly radial. Later experiments carried out
by, e.g., Ronsten [12] and Bruininget al. [3] support these observations.

In an analysis by Fogarty [5] it was shown that 3D cross flow effects are small for
attached boundary layers on a rotating blade. As a conclusion, Fogarty suggested that the
observed deviations from 2D behaviour only occur for separated boundary layers. From
flow visualizations on a rotating blade, the same was noted by McCroskey [8] who observed
separated flow to be dominated by a significant radial flow component, whereas the location
of the separation line did not change appreciably. In Appendix A we show that the spanwise
velocity component compared to the chordwise component scales as(c/z)p, wherec is
the chord length andz is the spanwise distance measured from the rotational axis, with
p= 1 for attached flow andp=−1/3 for separated flow. Thus, near the rotational axis
wherec/z=O(1) rotational effects are expected to have a significant impact on the airfoil
characteristics for both attached and separated flows. On the outer part of the blade, however,
rotational effects are mainly related to separated flow.

To provide more representative airfoil data for use in rotor-performance calculations,
it is necessary to derive synthesized 3D data either from experiments or from calcula-
tions. For many reasons it is difficult, however, to extract the data solely from experiments.
First, data from model experiments are of minor value as the Reynolds number, which
is a crucial model parameter, has to be very close to reality. Second, in a full-scale ex-
periment it is a difficult, if not impossible, task to derive local airfoil data which is not
polluted by secondary effects, such as turbulent inflow, tower blockage, etc. This is further-
more complicated by the problem of determining the local angle of attack correctly. On
the other hand, solving the full 3D Navier–Stokes equations in a rotating frame of refer-
ence is known to be very computing consuming and it is not evident how the results from
global 3D Navier–Stokes solutions may be employed to determine local airfoil character-
istics.

Thus there is a need for a method which is computationally reasonable at the same time
as it is capable of predicting leading 3D effects on a rotating blade in attached as well as in
stalled conditions.

In the proposed model, presented in the following, the full Navier–Stokes equations
are approximated using an order of magnitude analysis on the spanwise derivatives. This
results in a quasi-3D formulation in which rotational effects and radial flow components
are maintained. As a result, the calculation needs only to be carried out on a 2D airfoil,
hence reducing the computing costs in the order of what is typical for a pure 2D calculation.
Earlier, similar approaches have been made in fixed-wing aerodynamics by applying the
infinite-swept-wing approximation on the boundary layer equations, see, e.g., [4, 10]. For a
rotating blade, such an approximation has been implemented and used in viscous/inviscid
coupling algorithms [17, 18]. However, this is the first time it has been applied on the
unsteady Navier–Stokes equations in a rotating frame of reference.

The paper is organized as follows. In Section 2, the hypothesis employed in the spanwise
direction of the rotating airfoil is discussed and followed by a set of quasi-3D Navier–Stokes
equations. In Section 3, a Baldwin–Barth turbulence model for the quasi-3D model is given.
The numerical implementation is presented in Section 4. Numerical results for laminar as
well as turbulent flows are presented in Section 5.
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2. FORMULATION OF THE PROBLEM

Consider a blade section performing a rotating motion. Let(oxyz) be the rotating ref-
erence system associated with constant angular velocityÄy and letozdefine the spanwise
direction of the blade. Define byu= (u, v, w) the velocity and byω= (ωx, ωy, ωz) the
vorticity in the rotating reference system.

2.1. Hypotheses

By considering the flow around an infinite cylinder of arbitrary cross-section rotating
steadily about the (negative)y-axis (see Fig. 1) it was shown by Sears [14] that the inviscid
velocity components may be written as

u = Äyz
∂φ

∂x
, (1)

v = Äyz
∂φ

∂y
, (2)

w = Äy[2x − φ], (3)

whereφ=φ(x, y)denotes the equivalent 2D velocity potential due to a blade in translational
movement with unit speed in the negativex-direction. It is readily seen that the velocity
componentsu andv are given in a form as would be expected from a simple 2D analysis. It
is not obvious, however, that the spanwise velocity component can be expressed in a simple
formula which depends only on the velocity potential of the equivalent 2D flow.

In the later analysis of Fogarty and Sears [6] it was shown that the expression for the
spanwise velocity component is the same even if the blade is advancing in the direction per-
pendicular to the plane of rotation, i.e., they-direction. To derive an extended 2D approach
in which the important effects of Coriolis and centrifugal forces are included we now seek
a plausible approximation that allows us to get rid of the spanwise derivatives in the 3D
equations. An approximation that is consistent with Eqs. (1)–(3) is to assume the following
similarity expressions for the velocity components

u = f (x, y)z, (4)

v = g(x, y)z, (5)

w = h(x, y). (6)

FIG. 1. Definition of the coordinates.
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These expressions then lead to the basic hypothesis

∂u

∂z
= u

z
, (7)

∂v

∂z
= v

z
, (8)

∂w

∂z
= 0. (9)

In the boundary layer, Eqs. (4)–(6) assume similarity with a scaling of the spanwise
distance,z, for the chordwise velocity components. The spanwise velocity distribution is
assumed to be the same at all spanwise positions. This obviously introduce deviations, as
compared to a full 3D representation, that are difficult to quantify completely. However, in
Appendix A we have made an order of magnitude analysis of the terms that are modified
or neglected in the full 3D equations. From this it is found that in the worst case the error
will be of O(c/z)2 for attached flow and ofO(c/z)2/3 in the case of separation. It should
be noted, however, that the aim of the quasi-3D model is to enrich a 2D airfoil code with
effects from the influence of Coriolis and centrifugal forces. Thus, employing Eqs. (7)–(9)
to neglect terms containingz-derivatives a set of equations may be derived that is much
simpler than the full 3D equations and which contains 3D terms to leading order inc/z for
both attached and separated flows.

2.2. Formulation in Cartesian Coordinates

The motion of a viscous incompressible flow in a rotating reference system is governed
by the time-averaged Navier–Stokes equations

∂u
∂t
+∇ × u× u+ 2Ω× u+ ∂Ω

∂t
× r = −∇P + ∂

∂xj

[
(ν + νt )

(
∂u
∂xj
+∇u j

)]
, (10)

∇ · u = 0, (11)

whereΩ= (0, Äy, 0) and the total pressureP= p/ρ+ |u|2/2+ (Ω · r)2/2−Ä2r 2/2, with
p denoting the static pressure,ρ the density,ν the kinematic viscosity, andr the position
vector. The Reynolds stresses are modelled by introducing an eddy viscosityνt ,

−u′i u
′
j = νt

(
∂ui

∂xj
+ ∂u j

∂xi

)
, (12)

whereu′i denotes a fluctuating velocity component and( ) is the time-averaging.
In Eq. (10), the diffusion term contains a derivative ofνt with respect toz. This requires

an additional hypothesis forνt . For simplicity, we assume that

∂νt

∂z
= 0. (13)

Using the hypothesis (7), we get

∂2u

∂z2
= ∂

∂z

(
∂u

∂z

)
= ∂

∂z

(
u

z

)
= z∂u/∂z− u

z2
= z(u/z)− u

z2
= 0.
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Using the hypotheses (8) and (9), similar expressions are obtained for the other velocity
components

∂2v

∂z2
= 0,

∂2w

∂z2
= 0.

As a result thez-derivatives of the diffusion terms vanish

∂

∂z

[
(ν + νt )

(
∂u
∂z
+∇w

)]
= ∂(ν + νt )

∂z

(
∂u
∂z
+∇w

)
+ (ν + νt )

[
∂2u

∂z2
+∇

(
∂w

∂z

)]
= 0.

We now consider the vorticity definition. Using the hypothesis discussed in Subsec-
tion 2.1, the quasi-3D vorticity definition is given as

ωx = ∂w

∂y
− v

z
, (14)

ωy = u

z
− ∂w
∂x
, (15)

ωz = ∂v

∂x
− ∂u

∂y
. (16)

In Eq. (10), the onlyz-derivative left is the pressure. But there is no hypothesis, neither
for the static pressurep nor for the total pressureP. To overcome this difficulty, we consider
the curl operator defined above,(∂/∂x, ∂/∂y, 1/z)×, and keep in mind that the curl of a
gradient operator is zero. Then the only possible hypothesis for the pressure is that

∂(p+ |u|2/2+ (Ω · r)2/2−Ä2r 2/2)

∂z
= (p+ |u|2/2+ (Ω · r)2/2−Ä2r 2/2)

z
. (17)

From Eqs. (9) and (11), the divergence of the velocity becomes

∂u

∂x
+ ∂v
∂y
= 0.

Then the quasi-3D formulation in velocity-pressure variables reads

∂u

∂t
+ wωy − vωz+ 2wÄy = −∂P

∂x
+ 2

∂

∂x

(
ν∗
∂u

∂x

)
+ ∂

∂y

[
ν∗
(
∂u

∂y
+ ∂v
∂x

)]
, (18)

∂v

∂t
+ uωz− wωx = −∂P

∂y
+ ∂

∂x

[
ν∗
(
∂u

∂y
+ ∂v
∂x

)]
+ 2

∂

∂y

(
ν∗
∂v

∂y

)
, (19)

∂w

∂t
+ vωx − uωy − 2uÄy = − P

z
+ ∂

∂x

(
ν∗
∂w

∂x

)
+ ∂

∂y

(
ν∗
∂w

∂y

)
, (20)

∂u

∂x
+ ∂v
∂y
= 0, (21)

whereν∗ = ν + νt .
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In the present work we prefer to employ the velocity-vorticity form of the Navier–Stokes
equations because the algorithm forming the basis for the model is formulated in velocity-
vorticity variables (see [15]).

Taking the curl of Eqs. (18)–(20) we get

∂ωx

∂t
+ ∂

∂y
(vωx − u(ωy + 2Äy))+ wωx

z
− uωz

z

= ∂2(ν∗ωx)

∂y2
− ∂

2(ν∗ωy)

∂x∂y
− 1

z

∂(ν∗ωz)

∂x
+ 2

z

(
∂2ν∗

∂x∂y
u+ ∂

2ν∗

∂y2
v

)
, (22)

∂ωy

∂t
+ ∂

∂x
(u(ωy + 2Äy)− vωx)− vωz

z
+ w(ωy + 2Äy)

z

= ∂2(ν∗ωy)

∂x2
− ∂

2(ν∗ωx)

∂x∂y
− 1

z

∂(ν∗ωz)

∂y
− 2

z

(
∂2ν∗

∂x2
u+ ∂2ν∗

∂x∂y
v

)
, (23)

∂ωz

∂t
+ ∂(uωz)

∂x
+ ∂(vωz)

∂y
− ∂(wωx)

∂x
− ∂(w(ωy + 2Äy))

∂y

=
(
∂2

∂x2
+ ∂2

∂y2

)
[ν∗ωz] + 2

(
∂2ν∗

∂x2

∂u

∂y
+ ∂2ν∗

∂x∂y

∂v

∂y
− ∂2ν∗

∂x∂y

∂u

∂x
− ∂

2ν∗

∂y2

∂v

∂x

)
. (24)

The divergence of the velocity, Eq. (21), implies the existence of a stream function,ψ ,
in thez-direction such that

u = −∂ψ
∂y
, (25)

v = ∂ψ

∂x
. (26)

From the vorticity definition, Eq. (16), a Poisson equation forψ is obtained

∂2ψ

∂x2
+ ∂

2ψ

∂y2
= ωz. (27)

In order to ensure equivalence between the present formulation and that of the primitive
variables, the uniformity of the pressure, which determines the value of the stream function
at the airfoil surface, is added∮

c

[
∂((u+Ω× r) · s)

∂t
+ u · nωz− w(ω + 2Ω) · n− ν ∂ωz

∂n

]
ds= 0, (28)

wherec is any closed path around the airfoil,s is the tangent vector, andn the normal vector
to the surface.

The equation of the velocity component in thez-direction is obtained by combining the
vorticity definition, Eqs. (14) and (15), with Eq. (21)

∂2w

∂x2
+ ∂

2w

∂y2
= ∂ωx

∂y
− ∂ωy

∂x
. (29)
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2.3. Formulation in Curvilinear Coordinates

The computational grid is generated using a conformal mapping (see Appendix B). The
mesh is orthogonal and stretched in the radial direction of the airfoil. Denoting by(ξ, η)

the coordinates in the transformed plane, the transformation Jacobian is given by

J = ξxηy − ξyηx,

and the Jacobian of the inverse transformation is

J−1 = xξ yη − xηyξ .

Since the grid is orthogonal, we havexηxξ + yξ yη= 0. Define the contra-variant velocity
components

uc = yηu− xηv, (30)

vc = −yξu+ xξ v, (31)

and the contra-variant vorticity components

ωc
x = yηωx − xηωy, (32)

ωc
y = −yξωx + xξωy. (33)

Introducingα= yη/xξ , in curvilinear coordinates the vorticity definitions become

ωc
x =

∂w

∂η
− αv

c

z
, (34)

ωc
y =

uc

αz
− ∂w
∂ξ
, (35)

J−1ωz = ∂(αvc)

∂ξ
− ∂

∂η

(
uc

α

)
, (36)

and the divergence of the vorticity takes the form

J−1∇ · ω = ∂ωc
x

∂ξ
+ ∂ω

c
y

∂η
+ J−1ωz

z
= 0. (37)

The contra-variant velocity components are transformed from the definition of the stream
functionψ

uc = −∂ψ
∂η
, (38)

vc = ∂ψ

∂ξ
. (39)
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For convenience, the absolute vorticity is employed as a variable

ωc∗
x = yηωx − xη(ωy + 2Äy), (40)

ωc∗
y = −yξωx + xξ (ωy + 2Äy), (41)

ω∗z = ωz. (42)

Additional terms from the turbulence modelling are defined as

F1 = 2
∂u

∂x

∂νt

∂x
+ 2

∂v

∂x

∂νt

∂y
, (43)

F2 = 2
∂u

∂y

∂νt

∂x
+ 2

∂v

∂y

∂νt

∂y
, (44)

F3 = 2
u

z

∂νt

∂x
+ 2

v

z

∂νt

∂y

= 2

z J−1

(
uc ∂νt

∂ξ
+ vc ∂νt

∂η

)
. (45)

In the(ξ, η) coordinate system, the final vorticity transport equations take the form

∂ωc∗
x

∂t
+ ∂

∂η

(
vcωc∗

x − ucωc∗
y

J−1

)
−
(
ucω∗z − wωc∗

x

)
z

= − ∂

∂η

[
1

J−1

∂

∂ξ

(
αν∗ωc∗

y

)− 1

J−1

∂

∂η

(
ν∗ωc∗

x

α

)]
− α

z

∂(ν∗ω∗z)
∂ξ

+ ∂F3

∂η
− αFc

2

z
, (46)

∂ωc∗
y

∂t
+
(
wωc∗

y − vcω∗z
)

z
− ∂

∂ξ

(
vcωc∗

x − ucωc∗
y

J−1

)
= − 1

αz

∂(ν∗ω∗z)
∂η

+ ∂

∂ξ

[
1

J−1

∂

∂ξ

(
αν∗ωc∗

y

)− 1

J−1

∂

∂η

(
ν∗ωc∗

x

α

)]
+ Fc

1

αz
− ∂F3

∂ξ
, (47)

∂(J−1ω∗z)
∂t

+ ∂

∂ξ

(
ucω∗z − wωc∗

x

)+ ∂

∂η

(
vcω∗z − wωc∗

y

)
= ∂

∂ξ

[
α
∂(ν∗ω∗z)
∂ξ

]
+ ∂

∂η

[
1

α

∂(ν∗ω∗z)
∂η

]
+ αFc

2

∂ξ
− ∂

∂η

(
Fc

1

α

)
, (48)

where (Fc
1 , Fc

2 ) is the contra-variant form of(F1, F2).
The Poisson equations for the stream function and velocity component in thez-direction

become

∂

∂ξ

(
α
∂ψ

∂ξ

)
+ ∂

∂η

(
1

α

∂ψ

∂η

)
= J−1ωz, (49)

∂

∂ξ

(
α
∂w

∂ξ

)
+ ∂

∂η

(
1

α

∂w

∂η

)
= ∂

∂η

(
ωc

x

α

)
− ∂

(
αωc

y

)
∂ξ

. (50)

The uniformity condition of the pressure takes the form∮
c

[
∂(αvc)

∂t
+ ucω∗z − wωc∗

x − α
∂(ν∗ω∗z)
∂ξ

+ αÄ̇z(xxξ + yyξ )

]
dη = 0. (51)
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3. TURBULENCE MODELLING

The turbulence model used here is the one equation model of Baldwin and Barth [2]
which is derived from the classicalk− ε model. In the following, we give an introduction
to the present implementation of the model. Further details can be found in [2].

The model solves a partial differential equation for the turbulent Reynolds numberRt =
k2/(νε),

DRt

Dt
= (cε2 f2− cε1)

√
Rt P + ν

(
1+ 2

νt

σe

)
∂2Rt

∂xi ∂xi
− ν

σe

∂

∂xi

(
νt
∂Rt

∂xi

)
, (52)

where the eddy viscosity is defined asνt = cµνRt D1D2.
The functionsD1 andD2 are damping functions given as

D1 = 1− exp(−y+/A+1 ), (53)

D2 = 1− exp(−y+/A+2 ). (54)

As assumed,νt or Rt is independent ofz. As a consequence the derivatives in theRt

equation are taken only with respect tox andy.
The production termP is given as

P = νt

(
∂ui

∂xj
+ ∂u j

∂xi

)
∂ui

∂xj
, (55)

where the derivatives with respect to thez-direction are calculated using the hypotheses
given in Subsection 2.1.

The function f2 is defined as

f2(Y
+) = cε1

cε2
+
(

1− cε1
cε2

)(
1

kY+
+ D1D2

)
×
[√

D1D2+ Y+√
D1D2

(
D2

A+1
exp

(
−Y+

A+1

)
+ D1

A+2
exp

(
−Y+

A+2

))]
. (56)

The constants used are

k = 0.41, cε1 = 1.2, cε2 = 2,

cµ = 0.09, A+1 = 26, A+2 = 20.

The boundary condition forRt at the wall is taken equal to zero and at the inflow boundary
it is put equal to 0.5.

4. NUMERICAL IMPLEMENTATION

In this section, we present the discretization of the resulting system of equations in
curvilinear coordinates.
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4.1. Temporal Discretization

A semi-implicit, combined Adams–Bashforth/Crank–Nicolson scheme is used to ad-
vance the solution in time. It consists of writing the vorticity transport equations, Eqs. (46)–
(48), at time level(n + 1/2)δt and evaluating the convective-deformative and diffusion
terms semi-implicitly. The terms with(Fc

1 , Fc
2 , F3) andu are calculated explicitly at this

time level by using an Adams–Bashforth extrapolation scheme. Theνt -term appearing in
the transport equations is taken at time levelnδt .

Then, at each time step, a set of Helmholtz equations is obtained, with vorticity boundary
conditions, as

2

δt
ωc∗,n+1

x + Sn+1
1 = 2

δt
ωc∗,n

x − Sn
1 + 3

(
∂Fn

3

∂η
− αFc,n

2

z

)
−
(
∂Fn−1

3

∂η
− αFc,n−1

2

z

)
, (57)

2

δt
ωc∗,n+1

y + Sn+1
2 = 2

δt
ωc∗,n

y − Sn
2 + 3

(
Fc,n

1

αz
− ∂Fn

3

∂ξ

)
−
(

Fc,n−1
1

αz
− ∂Fn−1

3

∂ξ

)
, (58)

2

δt

(
J−1ω∗,n+1

z

)+ Sn+1
3

= 2

δt

(
J−1ω∗,nz

)−Sn
3+3

[
αFc,n

2

∂ξ
− ∂

∂η

(
Fc,n

1

α

)]
−
[
αFc,n−1

2

∂ξ
− ∂

∂η

(
Fc,n−1

1

α

)]
, (59)

ωc
x

∣∣
ξ=0 =

(
∂w

∂η
− αv

c

z
− 2xηÄy

)∣∣∣∣
ξ=0

, (60)

ωc
y

∣∣
ξ=0 =

(
uc

αz
− ∂w
∂ξ
+ 2xξÄy

)∣∣∣∣
ξ=0

, (61)

ωz|ξ=0 =
[(
∂(αvc)

∂ξ
− ∂

∂η

(
uc

α

))/
J−1

]∣∣∣∣
ξ=0

, (62)

where

Sn+1
1 = ∂

∂η

(
vc,n+1/2ωc∗,n+1

x − uc,n+1/2ωc∗,n+1
y

J−1

)
−
(
uc,n+1/2ω∗,n+1

z − wn+1/2ωc∗,n+1
x

)
z

+ ∂

∂η

[
1

J−1

∂

∂ξ

(
αν∗,nωc∗,n+1

y

)− 1

J−1

∂

∂η

(
ν∗,nωc∗,n+1

x

α

)]
+ α

z

∂
(
ν∗,nω∗,n+1

z

)
∂ξ

,

(63)

Sn
1 =

∂

∂η

(
vc,n+1/2ωc∗,n

x − uc,n+1/2ωc∗,n
y

J−1

)
−
(
uc,n+1/2ω∗,nz − wn+1/2ωc∗,n

x

)
z

+ ∂

∂η

[
1

J−1

∂

∂ξ

(
αν∗,nωc∗,n

y

)− 1

J−1

∂

∂η

(
ν∗,nωc∗,n

x

α

)]
+ α

z

∂
(
ν∗,nωc∗,n

z

)
∂ξ

, (64)

Sn+1
2 =

(
wn+1/2ωc∗,n+1

y − vc,n+1/2ω∗,n+1
z

)
z

− ∂

∂ξ

(
vc,n+1/2ωc∗,n+1

x − uc,n+1/2ωc∗,n+1
y

J−1

)
+ 1

αz

∂
(
ν∗,nω∗,n+1

z

)
∂η

− ∂

∂ξ

[
1

J−1

∂

∂ξ

(
ν∗,nαωc∗,n+1

y

)− 1

J−1

∂

∂η

(
ν∗,nωc∗,n+1

x

α

)]
,

(65)
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Sn
2 =

(
wn+1/2ωc∗,n

y − vc,n+1/2ω∗,nz

)
z

− ∂

∂ξ

(
vc,n+1/2ωc∗,n

x − uc,n+1/2ωc∗,n
y

J−1

)
+ 1

αz

∂
(
ν∗,nω∗,nz

)
∂η

− ∂

∂ξ

[
1

J−1

∂

∂ξ

(
ν∗,nαωc∗,n

y

)− 1

J−1

∂

∂η

(
ν∗,nωc∗,n

x

α

)]
, (66)

Sn+1
3 = ∂

∂ξ

(
uc,n+1/2ω∗,n+1

z − wn+1/2ωc∗,n+1
x

)+ ∂

∂η

(
vc,n+1/2ω∗,n+1

z − wn+1/2ωc∗,n+1
y

)
− ∂

∂ξ

[
α
∂
(
ν∗,nω∗,n+1

z

)
∂ξ

]
− ∂

∂η

[
1

α

∂
(
ν∗,nω∗,n+1

z

)
∂η

]
, (67)

Sn
3 =

∂

∂ξ

(
uc,n+1/2ω∗,nz − wn+1/2ωc∗,n

x

)+ ∂

∂η

(
vc,n+1/2ω∗,nz − wn+1/2ωc∗,n

y

)
− ∂

∂ξ

[
α
∂
(
ν∗,nω∗,nz

)
∂ξ

]
− ∂

∂η

[
1

α

∂
(
ν∗,nω∗,nz

)
∂η

]
, (68)

and

uc,n+1/2 = 1.5uc,n − 0.5uc,n−1, (69)

vc,n+1/2 = 1.5vc,n − 0.5vc,n−1, (70)

wn+1/2 = 1.5wn − 0.5wn−1. (71)

In the above system of equations, the three vorticity components,ωc∗,n+1
x , ωc∗,n+1

y , and
ω∗,n+1

z are coupled and solved simultaneously.

4.2. Spatial Discretizations

The equations are discretized in the transformed plane [0, Rξ ]× [0, 2] which is divided
into a Nξ × Nη regular mesh with spatial discretization

δξ = Rξ
Nξ
, δη = 2

Nη
.

To ensure that the discrete functions verify the conditions(∇ ·ω= 0,∇ ·u= 0,ω=
∇ ×u), a staggered grid is used. The first and second derivatives are discretized by a
standard second-order centered difference scheme except the convective-deformative terms
that are discretized by an upwind second-order QUICK scheme. The collocation points for
the different unknowns are defined as shown below:

• The velocity componentuc is calculated at nodes((i +1/2)δξ, j δη) for 1≤ i ≤ Nξ ,
1≤ j ≤ Nη.
• The velocity componentvc is calculated at nodes(i δξ, ( j +1/2)δη) for 1≤ i ≤ Nξ ,

1≤ j ≤ Nη.
• The velocity componentω is calculated at nodes(i δξ, j δη) for 1≤ i ≤ Nξ , 1≤ j ≤

Nη.
• The vorticity componentωc

x is calculated at nodes(i δξ, ( j + 1/2)δη) for 1≤ i ≤ Nξ ,
1≤ j ≤ Nη.
• The vorticity componentωc

y is calculated at nodes((i + 1/2)δξ, j δη) for 1≤ i ≤
Nξ − 1, 1≤ j ≤ Nη.
• The vorticity componentωz is calculated at nodes((i + 1/2)δξ, ( j + 1/2)δη) for

1≤ i ≤ Nξ−1, 1≤ j ≤ Nη.
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• The stream functionψ is calculated at nodes(i δξ, j δη) for 1≤ i ≤ Nξ , 1≤ j ≤ Nη.
• The divergence∇ · u is calculated at nodes(i δξ, j δη) for 2≤ i ≤ Nξ , 1≤ j ≤ Nη.
• The divergence∇ ·ω is calculated at nodes((i + 1/2)δξ, ( j + 1/2)δη) for 1≤ i ≤

Nξ − 1, 1≤ j ≤ Nη.

4.3. Resolution of the Helmholtz Equations

In order to ensure a divergence free vorticity field, the three Helmholtz equations are
solved simultaneously by a Gauss–Seidel or a Successive Line Overrelaxation (SLOR)
iterative method. The latter consists of an implicit calculation in one specified direction in
order to accelerate the convergence of the iterative method.

Since the convective-deformative terms are discretized semi-implicitly, three matrices,
each containing 5 diagonals, have to be solved in each iteration of the SLOR method. At
the points where the velocity and vorticity components are not defined, a linear or bilinear
interpolation is used. Further details can be found in [15].

4.4. Resolution of theψ- andw-Equations

Theψ- andw-equations are both Poisson equations. For simplicity, we consider only the
ψ-equation. In general, a 2D Poisson equation can be solved easily by an ADI (alternating
direction implicit) method or an iterative method, such as GMRES or Gauss–Seidel. Since
a very strong stretching has been used inξ -direction, this kind of method demands a lot of
iterations and loses the numerical precision.

Since the grid used is periodic in theη-direction, a Fourier transformation in this direction
has been applied adaptively. In Fourier space, the transformed equation takes the form

∂

∂ξ

(
α
∂ψ̂k

∂ξ

)
− π

2k2

α
ψ̂k = ̂J−1ωzk, (72)

for−Nη/2≤ k≤ Nη/2. The standard second-order central difference scheme is used in the
ξ -direction. The resulting matrix system is solved easily by a simple LU-factorisation.

The Fourier transformation of a function,f , is given by

f̂k = δη

2

Nη∑
j=1

f ( j ) exp(−π( j − 1)kδη), for −Nη/2+ 1≤ k ≤ Nη/2− 1,

f̂k = δη

4

Nη∑
j=1

f ( j ) exp(−π( j − 1)kδη), for k = −Nη/2, Nη/2,

and the inverse Fourier transformation is

f ( j ) =
Nη/2∑

k=−Nη/2

f̂k exp(π( j − 1)kδη).

The integral equation for uniformity of the pressure is discretized by introducing a uniform
tangential velocityvτ or a circulation at the first points off the airfoil surface,∮

c

[√
αJ−1vτ

δt
+ ucω∗z − wωc∗

x − α
∂(ν∗ω∗z)
∂ξ

+ αÄ̇z(xxξ + yyξ )

]
dη = 0.
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This additional tangential velocity serves to determine the stream function at the surface
and results in an implicit Neumann condition for mode 0 of the stream function.

5. NUMERICAL RESULTS AND DISCUSSION

In the following, results for laminar flow past a rotating NACA 0015 airfoil and turbulent
flow past a rotating NACA 632− 415 airfoil are presented. The effect of rotation is elucida-
ted by comparing quasi-3D computations to 2D computations and measurements, with the
non-dimensional spanwise distance,k= z/c, as an additional 3D parameter.

5.1. Quasi-3D Computations for Laminar Flows

To demonstrate the influence of 3D rotating effects, the flow around a NACA 0015 airfoil
at a Reynolds number 200 is calculated on a 129× 101 O-grid with stretching coefficient
a′ = 0.5.

In order to analyse the influence of the computational grid, a fine grid with 257× 201
points was used in the case of an airfoil at incidence 15◦ andk= 6. The pressure variation is
shown in Fig. 2. From the figure it is seen that, except for a small difference at the pressure
peak, the two curves are almost identical. Consequently, all the computations shown in this
section are carried on the 129× 101 grid.

First, steady flow at an angle of attackα equal to 15◦ is examined. In Fig. 3 where stream
lines are shown at varying distances from the rotational axis,k= z/c, a decrease is seen in
the size of the separated region for decreasingk. As shown in Appendix A this is expected
asw/u=O(k−1) for the boundary layer outside the separated region.

FIG. 2. The−Cp variation around a NACA 0015 airfoil at incidence 15◦, Re= 200, andk= 6.
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FIG. 3. Stream lines for the flow around a NACA 0015 airfoil at incidence 15◦ and Re= 200, (a) 2D,
(b) k= 6, (c)k= 4.

Distributions of the negative pressure coefficient,−Cp, and skin friction coefficient,
C f , are in Fig. 4 shown at various spanwise distances,k. At the lower side of the airfoil,
−Cp is seen to be almost independent ofk, whereas the upper side values increase when
approaching the rotational axis. This corresponds to the shrinking of the separation bubble
that was observed in Fig. 3 at decreasingk values. The skin friction distribution is seen to
be almost identical at all spanwise distances, thus rotational effects only have an influence
on the pressure distribution. Further, this influence is only significant at separation.
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FIG. 4. The−Cp andCf distributions on a NACA 0015 airfoil at incidence 15◦ and Re= 200.

In Fig. 5, the streamwise vorticity component is shown fork= 6 andk= 4. From the
figure, this vorticity component is seen to attain higher values at decreasing spanwise
positions. The spanwise vorticity component is shown for 2D, k= 6, andk= 4 in Fig. 6.
From the figure, no big difference is seen except that the vorticity is closer to the wall at the
separated region when decreasing spanwise positions (same phenomenon as in the stream
line plot, Fig. 3).

Computed drag and lift coefficientsCd andCl , respectively, at different distancesk and
incidencesα are shown in Fig. 7. It is noted that for all incidences, decreasing the spanwise
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FIG. 5. Streamwise vorticity for the flow around a NACA 0015 airfoil at incidence 15◦ and Re= 200,
(a)k= 6, (b)k= 4.

positionk results in increased lift and drag coefficients. As shown by the figure, the increase
in lift is more pronounced than the increase in drag. Note that in this figure, the values at
incidence 25◦ are averaged in time because the flows have become unsteady.

5.2. Quasi-3D Computations for Turbulent Flows

In order to analyse the influence of 3D rotating effects on turbulent flows, the flow past a
rotating NACA 632− 415 airfoil has been computed at a Reynolds numberRe= 1.5× 106.
This airfoil is widely used for wind turbine rotors, e.g., the outer part of the LM 19 wind
turbine blade. The calculations are performed on a 161× 101 grid using the Baldwin–Barth
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FIG. 6. Spanwise vorticity for the flow around a NACA 0015 airfoil at incidence 15◦ and Re= 200, (a) 2D,
(b) k= 6, (c)k= 4.

turbulence model. To ensure that the first grid point off the airfoil surface is located aty+-
values less than 4, the height of the first computational cell is put equal to about 3· 10−5,
resulting in a stretching coefficienta′ = 0.999.

As a first validation of the developed code, 2D computations on a 161× 101 grid were
compared to experimental data [1] for incidences up to 25◦. The outcome is shown in Fig. 8
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FIG. 7. Cd andCl vsα for a NACA 0015 airfoil at Re= 200.

where the computedCl -distribution is compared to measured airfoil data at a Reynolds
number of 3× 106. The comparison demonstrates that the 2D version of the code in
combination with the Baldwin–Barth turbulence model is capable of predicting both stall
and post-stall correctly.
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FIG. 8. Comparison of computed 2DCl -coefficient vsα of a NACA 632 − 415 airfoil at Re= 1.5× 106

with experimental data at Re= 3× 106.

In order to analyse the sensitivity of the grid spacing, two additional computations, one
where the number of grid points was doubled in tangential direction and one with a stronger
stretching ofa′ = 0.9995 in the normal direction, were carried out at an incidence of 20◦

andk= 6. The pressure variations are compared in Fig. 9. From the figure it is seen that
letting the maximum distance of the first grid points away from the airfoil surface go from
y+ = 3.5 to y+ = 1.7 does not change the pressure distribution. This is to be expected, as

FIG. 9. The−Cp variation around a NACA 632 − 415 airfoil at incidence 20◦, Re= 1.5× 106, andk= 6.
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we employ an O-grid wherey+ attains minimum values at the leading and the trailing edge.
For the original mesh these values are below two. Doubling the number of the grid points in
the tangential direction from 161 to 321, however, is seen to change the−Cp-distribution
on the suction side of the airfoil. Furthermore, a weak unsteady solution appears on the fine
grid. This is seen in the stream line plot in Fig. 10, where the wake line on the fine grid
exhibits an unsteady undulating behaviour. The sensitivity of the grid spacing on the air-
foil characteristics is summarized in Table I. From this it is seen that a further stretching in the

FIG. 10. Stream lines for the flow around a NACA 632 − 415 airfoil at incidence 20◦, Re= 1.5× 106, and
k= 6. (a) Results for 161× 101 points withy+ ≤ 3.5 at the first points away from the wall; (b) 321× 101 points
with y+ ≤ 3.5 at the first points away from the wall; (c) 161× 101 points withy+ ≤ 1.7 at the first points away
from the wall.
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TABLE I

Grid Refinement Study for the NACA 632 − 415 Airfoil

at Incidence 20◦, Re = 1.5× 106 and k = 6

Grid maxy+ Cd Cl Cm

161× 101 3.5 0.13841 1.71266 −0.10335
321× 101 3.5 0.15669 1.61114 −0.10991
161× 101 1.7 0.13682 1.71274 −0.10252

FIG. 11. Stream lines for the flow around a NACA 632 − 415 airfoil at incidence 20◦ and Re= 1.5× 106,
(a) 2D, (b)k= 6, (c)k= 4.
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normal direction does not change noticeably the airfoil forces. Doubling the number of grid
points in the tangential direction decreases the lift coefficient by about 6% and increases
the drag coefficient by about 12%, as compared to the original mesh. Consequently, the
solution is still grid-dependent, but to analyse the influence of rotational effect on the airfoil
characteristics it is found to be sufficient to perform the computations on the 161× 101
grid.

In order to analyse the influence of rotation on the development of separation bubbles,
the flow at an incidence of 20◦ has been studied using the quasi-3D model. In Fig. 11,
streamline plots are shown atk=∞(2D), 6, and 4. It is seen that the effect of rotation is to

FIG. 12. The−Cp andCf distributions on a NACA 632 − 415 airfoil at incidence 20◦ and Re= 1.5× 106.
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FIG. 13. Streamwise vorticity for the flow around a NACA 632−415 airfoil at incidence 20◦ and Re= 1.5×106,
(a)k= 6, (b)k= 4.

stabilize vortex shedding and suppress the growth of the separation bubble. The stagnation
point moves downstream and the separation moves slightly towards the leading edge when
k becomes small. This phenomenon is also observed in the−Cp andC f curves in Fig. 12,
where the influence of rotation is seen to be most pronounced on the−Cp-distribution,
as was also found in the laminar case. In Fig. 13, the streamwise vorticity is shown for
k= 6 and 4. From the figure this vorticity component is seen to attain higher values when
approaching the rotational axis, i.e., for smallk-values. In Fig. 14 we depict the normal
force coefficient,Cn, and the tangential force coefficient,Ct , as a function of incidence. It
is observed that decreasingk results in an increase inCn and a decrease inCt , with the
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FIG. 14. Cn andCt vsα of a NACA 632 − 415 airfoil at Re= 1.5× 106.

former being the most significant. Thus, a maximumCn-value of about 1.4 in the 2D case
is increased to approximately 1.9 atk= 4.

6. CONCLUSION

A quasi-3D Navier–Stokes model which takes into account rotational and 3D effects has
been developed. The model enables the study of the rotational effect of a rotor blade at
computing costs similar to what is typical for 2D airfoil calculations.
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The model shows, both for laminar and turbulent flows, that rotational effects have
an influence on the airfoil characteristics that depends on the non-dimensional spanwise
distance,k= z/c. Thus, the effect of rotation, which becomes more pronounced as the axis
of rotation is approached, is to suppress vortex shedding and the development of separation
bubbles. As a consequence, decreasing the spanwise position results in an increase in both
Cl andCd.

The depicted results show that the model is capable of determining the correct qualitative
behaviour for airfoils subject to rotation. It has not been possible to compare the computed
results with detailed 3D experiments, as such are not available. However, the model is
presently being validated against full 3D computations in order to verify the error introduced
by the basic hypothesis. If it turns out that the model gives the correct behaviour, not just
qualitatively as in the cases treated here, but also quantitatively, it will be a useful tool for
deriving airfoil data for use in engineering predictive codes.

APPENDIX A: ORDER OF MAGNITUDE ESTIMATION OF z-DERIVATIVES

To evaluate the influence of terms containingz-derivatives we here perform an order of
magnitude analysis on the flow equations in a rotating frame of reference. For simplicity
we only consider the parabolized Navier–Stokes equations in chordwise and spanwise
directions.

Considering a body-fitted coordinate system(s, n, z)with velocity components(u, v, w),
we get continuity,

∂u

∂s
+ ∂v
∂n
+ ∂w
∂z
= 0, (1)

s-momentum,

u
∂u

∂s
+ v ∂u

∂n
+ w∂u

∂z
= − 1

ρ

∂p

∂s
+ 2Äyw cosθ +Ä2

yscos2 θ + ∂τs

∂n
, (2)

z-momentum,

u
∂w

∂s
+ v ∂w

∂n
+ w∂w

∂z
= − 1

ρ

∂p

∂z
− 2Äyu cosθ +Ä2

yz+ ∂τz

∂n
, (3)

whereθ is the angle between the tangent to the surface of the airfoil and thex-direction.
The shear stresses are given as

τs = ν ∂u

∂n
− u′v′,

τz = ν ∂w
∂n
− v′w′,

with u′v′ andv′w′ denoting the dominant Reynolds stresses.
As the scaling laws depend on the type of flow regime considered, we here distinguish

between attached and separated flows. Geometrically we scale the chordwise dimension,
s, by means of the blade chord,c, and the normal dimension,n, by the boundary layer
thickness,δ. The latter, however, has no influence on the analysis to be presented in the
following.
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A.1. Attached Flow

For attached flow we assume the chordwise velocity to scale with the inviscid freestream
velocity,

u ∼
√
Ä2

yz2+U2∞ = Äyz
√

1+ λ2, (4)

whereλ = U∞/Äyz.
From the analysis of Sears [14], we get the relation

w ∼ Äyc. (5)

Introducing this scaling to the continuity equation we get

∂w

∂z

/
∂u

∂s
∼
(

c

z

)2/√
1+ λ2. (6)

To estimate the order of magnitude ofλ we may takeÄyz= 30 m/s, which would corre-
spond to the mid section of a wind turbine blade that is turning with a tip speed of 60 m/s. As
the wind speed ranges from 0 to about 30 m/s, we get thatλ∈ [0, 1]. Thus, in the continuity
equation∂w/∂zscales asO(c/z)2, and can be neglected for high aspect ratio blades, where
c¿ z.

In the momentum equations the chordwise convection terms are the leading terms for
attached flow. Comparing these to the spanwise convection terms, we get

w
∂u

∂z

/
u
∂u

∂s
∼
(

c

z

)2/√
1+ λ2, (7)

w
∂w

∂z

/
u
∂w

∂s
∼
(

c

z

)2/√
1+ λ2. (8)

Thus, the spanwise convection terms scale asO(c/z)2 and may thus be neglected forc¿ z.

A.2. Separated Flow

In separated flow regimes the chordwise pressure gradient becomes small and we here
assume the Coriolis term, 2Äyw cosθ , to be the leading term in thes-momentum equation,

u
∂u

∂s
∼ Äyw,

implying that

u ∼√Äywc. (9)

In the z-momentum equation we assume the centrifugal pumping term,Ä2
yz, to be the

dominant one. The scaling then takes the form

O

(
u
∂w

∂s

)
= O

(
Ä2

yz
)
,
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implying that

u ∼ Ä2
yzcw−1. (10)

Combining (9) and (10) we get

u ∼ Äyc2/3z1/3, (11)

w ∼ Äyc1/3z2/3, (12)

and we may now evaluate the order of the spanwise derivatives,

w
∂u

∂z

/
u
∂u

∂s
∼
(

c

z

)2/3

, (13)

w
∂w

∂z

/
u
∂w

∂s
∼
(

c

z

)2/3

, (14)

∂w

∂z

/
∂u

∂s
∼
(

c

z

)2/3

. (15)

APPENDIX B: GENERATION OF ORTHOGONAL O-GRID

The orthogonal O-grid used in this paper is constructed by using a conformal mapping
which is an analytical function of finite series Fourier expansion [1]. In the next sections,
we present how to determine the Fourier coefficients (Appendix B.1) and the final form of
conformal mapping (Appendix B.2).

B.1. Determination of Fourier Expansion for an Airfoil Profile

In general, any airfoil profile can be mapped to a near circle by the relation

z= z′ + a2

z′
, (16)

wherea = chord of airfoil/4, z is the complex variable in the airfoil plane, andz′ the one
in the near circle plane.

The coordinates ofz andz′ are defined as

z = x + yi, (17)

z′ = a exp(ψ + i θ). (18)

Then,ψ andθ can be expressed in terms ofx andy as

coshψ = x

2a cosθ
,

sinhψ = y

2a sinθ
,

2 sin2 θ = p+
√

p2+
(

y

a

)2

,
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where

p = 1−
(

x

2a

)2

−
(

y

2a

)2

.

The second step is to find the relation between the near circle and a true circle. The
coordinates of the true circle are defined as

z0 = a exp(λ+ iφ). (19)

The transformation relating thez′ plane to thez0 plane is the general transformation

z′ = z0 exp

( ∞∑
1

An + i Bn

z0
n

)
. (20)

By definitions (18) and (19),

z′ = z0 exp(ψ − λ+ i (θ − φ)). (21)

Equating the real and imaginary parts of (20) and (21), we obtain the two Fourier expan-
sions

ψ − λ =
∞∑
1

(
An

r n
cosnφ + Bn

r n
sinnφ

)
, (22)

θ − ψ =
∞∑
1

(
Bn

r n
cosnφ − An

r n
sinnφ

)
, (23)

with r = a exp(λ).
If ψ is specified at 2n equally spaced intervals in the range 0≤ φ ≤ 2π , the firstn-orders

of Fourier expansions have been taken. Then we have

λ = 1

2n

2n−1∑
r=0

ψr , (24)

whereψr is the value atφ = rπ/n and

Am = 1

n

2n−1∑
r=0

ψr cos

(
m

rπ

n

)
, (25)

Bm = 1

n

2n−1∑
r=0

ψr sin

(
m

rπ

n

)
. (26)

Ordinarilyψ is known as a function ofθ , and first approximations are obtained by sub-
stitution ofθ for φ in the relations (24)–(26). If the first approximations are not sufficiently
accurate, a second approximation can be found by interpolation ofψ againstφ. Repeating
this procedure, the airfoil profile can be represented sufficiently accurate.
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B.2. Final Form of the Conformal Mapping

In this section, the conformal mapping is generalized in the whole plane. Settinga=
1/exp(λ), we have the mapping from the circler = 1 to the physical profile with chord 4a.
Introducing the stretching function inr -direction of the plane outside the circle

r = a′ + (1− a′) exp(πξ),

φ = πη,

wherea′ is a coefficient of the stretching, we have the expressions

ψ = logr +
n∑

m=1

Am

r m
cosmφ + Bm

r m
sinmφ, (27)

θ = φ +
n∑

m=1

Bm

r m
cosmφ − Am

r m
sinmφ, (28)

and

z = z′ + a2

z′
,

z′ = exp(ψ + i θ).

The metric functions of the conformal mapping∂x/∂ξ , ∂y/∂ξ , ∂x/∂η, and∂y/∂η are
calculated as

∂x

∂ξ
+ i

∂y

∂ξ
= π(r − a′)

r

(
z0− a2

z0

)
(Cx + iCy),

∂x

∂η
+ i

∂y

∂η
= π i

(
z0− a2

z0

)
(Cx + iCy),

with

Cx = 1+
n∑

m=1

−m

r m
(Am cosmφ + Bm sinmφ),

Cy =
n∑

m=1

−m

r m
(Bm cosmφ − Am sinmφ),

and inverse metric functions∂ξ/∂x, ∂η/∂x, ∂ξ/∂y, and∂η/∂y

∂ξ

∂x
= r

r − a′
Cx Re(F)+ Cy Im(F)

C2
x + C2

y

,

∂η

∂x
= Cx Im(F)− Cy Re(F)

C2
x + C2

y

,

∂ξ

∂y
= r

r − a′
Cy Re(F)− Cx Im(F)

C2
x + C2

y

,

∂η

∂y
= Cx Re(F)+ Cy Im(F)

C2
x + C2

y

,



QUASI-3D NAVIER–STOKES MODEL 547

with

F = 1

π(z0− a2/z0)
.

From these metric functions,α is independent ofφ,

α = r

r − a′
.
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